Diversity Enhancing Mechanisms for Evolutionary Optimization in Static and Dynamic Environments
نویسندگان
چکیده
The population diversity is an important issue in evolutionary optimization, playing the main role in exploring the search space. The aim of this paper is to analyze the influence of some diversity enhancing mechanisms on the ability of two algorithms related to evolutionary optimization, differential evolution and particle swarm optimization, to solve static and dynamic optimization problems.
منابع مشابه
Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملmNAFSA: A novel approach for optimization in dynamic environments with global changes
Artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligence algorithms that is widely used for optimization purposes in static environments. However, numerous real-world problems are dynamic and uncertain, which could not be solved using static approaches. The contribution of this paper is twofold. First, a novel AFSA algorithm, so called NAFSA, has been proposed in...
متن کاملInvestigating the effects Diversity Mechanisms have on Evolutionary Algorithms in Dynamic Environments
Evolutionary algorithms have been successfully applied to a variety of optimisation problems in stationary environments. However, many real world optimisation problems are set in dynamic environments where the success criteria shifts regularly. Population diversity affects algorithmic performance, particularly on multiobjective and dynamic problems. Diversity mechanisms are methods of altering ...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کامل